A Targeted Nanoprobe Based on Carbon Nanotubes-Natural Biopolymer Chitosan Composites
نویسندگان
چکیده
A novel targeting theranostic nanoprobe based on single-walled carbon nanotubes (SWCNTs)-natural biopolymer chitosan composites was developed for cancer cell targeting imaging and fluorescence imaging-guided photodynamic therapy. First, chitosan was respectively conjugated with a tumor-homing molecule folic acid, or a photosensitizing drug pyropheophorbide a using a water-soluble carbodiimide coupling chemistry. Chitosan was fluorescently labeled by fluorescein isothiocyanate via the covalently linkage of the isothiocyanate group with the amino group. Second, SWCNTs were sonicated in the functional chitosan aqueous solution for 6 h at room temperature in order to obtain the nanoprobe (PPa/FITC-SWCNT-FA). The as-prepared nanoprobe has been characterized with transmission electron microscope, confocal microscopy, and cell cytotoxicity tests. Chitosan was decorated onto SWCNTs resulting in the water-dispersible PPa/FITC-SWCNT-FA, and can be selectively transported inside folate receptor-positive tumor cell with good targeting imaging. PPa/FITC-SWCNT-FA exhibited low dark toxicity about 7%-13%, and high phototoxicity about 60%-74% against HeLa cells upon a 635 nm laser irradiation, indicating satisfying biocompatibility and antitumor activity. These results suggest the study could offer a feasible alternative to presently available nanoparticle-based theranostic agents.
منابع مشابه
Chitosan Composites for Bone Tissue Engineering—An Overview
Bone contains considerable amounts of minerals and proteins. Hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂] is one of the most stable forms of calcium phosphate and it occurs in bones as major component (60 to 65%), along with other materials including collagen, chondroitin sulfate, keratin sulfate and lipids. In recent years, significant progress has been made in organ transplantation, surgical reconstructi...
متن کاملUltrasensitive electrochemiluminescence immunosensor using PtAg@carbon nanocrystals composites as labels and carbon nanotubes-chitosan/gold nanoparticles as enhancer.
An ultrasensitive electrochemiluminescence (ECL) immunosensor was developed using PtAg@carbon nanocrystals (CNCs) as excellent labels based on carbon nanotubes-chitosan/AuNPs (CNT-CHIT/AuNPs) composite modified screen-printed carbon electrodes (SPCEs) for prostate protein antigen (PSA) detection. The CNCs were obtained simply by electro-oxidation of graphite with abundant carboxyl groups at the...
متن کاملVibration Analysis of Timoshenko Beam reinforced with Boron-Nitride Nanotube on Elastic Bed
In this paper, free vibration analysis of a polymer-based nano-composite beam reinforced by boron-nitride nanotubes and subjected on elastic foundation, is studied. Smooth and defect-free nanotubes with uniform and directly- orientated in matrix are intended. Also, nanotubes’ distribution in the thickness direction of beam is regarded as a uniform distribution of the three different targeted on...
متن کاملElectrical and electromagnetic properties of isolated carbon nanotubes and carbon nanotube-based composites
Isolated carbon nanotubes (CNTs), CNT films and CNT-polymer nanocomposites are a new generation of materials with outstanding mechanical, thermal, electrical and electromagnetic properties. The main objective of this article is to provide a comprehensive review on the investigations performed in the field of characterizing electrical and electromagnetic properties of isolated CNTs and CNT-reinf...
متن کاملCarbon nanotubes reinforced electrospun chitosan nanocomposite coating on anodized AZ31 magnesium alloy
Chitosan based nanofibers containing carbon nanotubes were applied on AZ31 magnesium alloy via electrospinning. The magnesium substrate was initially anodized in a NaOH solution in order to improve the adhesion between the coating and substrate. Electrospinning parameters were optimized and homogenous nanofibers composite coatings were produced. Addition of carbon nanotubes reduced the size of ...
متن کامل